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Chemical Kinetics is Turing Universal

Marcelo O. Magnasco
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(Received 20 February 1996; revised manuscript received 15 August 1996)

We show that digital logic can be implemented in the chemical kinetics of homogeneous solutions:
We explicitly construct logic gates and show that arbitrarily large circuits can be made from them. This
proves that a subset of the constructions available to life has universal (Turing) computational power.
[S0031-9007(97)02332-6]

PACS numbers: 87.10.+e, 89.80.+h, 82.20.Mj
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Interest in chemical computation has followed four di
ferent paths. It is one of the natural extensions of discu
sions about information and thermodynamics, which
back to Maxwell demon arguments and Szilard’s wo
[1–5]. It is also a rather natural extension to the a
plication of dynamical systems theory to chemical rea
tions [6–8], in particular logic networks stemming from
bistable reaction systems [9]. A lot of effort has been d
voted to trying to devise nonstandard computational arc
tectures, and chemical implementations provide a disti
enough backdrop to silicon [10–12]. Finally, in recen
years biology has presented us with what looks to be
tual chemical computers: the enzymatic cascades of
signaling [13–15].

One of the first questions that can be asked in th
subject is whether universal (Turing) computation ca
be achieved within some theoretical model of chemist
the most immediate one is standard chemical kineti
This question has been recently studied in some de
[16–22], and even subject to experimental tests [23].
[18–20], Hjelmfelt et al. argued quite convincingly that
building blocks for universal computation indeed can b
constructed within ideal chemical kinetics, and that th
could be interconnected to achieve computation. Ho
ever, many difficulties still lie in the way. An issue
not addressed by Hjelmfeltet al. is structural stability:
the tolerance of a system to changes in parameters
functional structure. In particular, “gluing” together two
groups of chemical reactions will have appreciable effe
on the kinetics of both groups; the basic unit and the co
plings used in [18–20] require case-by-case adjustmen
individual parameters for proper functioning.

The purpose of this Letter is to provide a slightl
more formal proof that chemical kinetics can be us
to construct universal computers. I will concentrate o
the “next” level of difficulty, which is that of theglobal
behavior of a fully coupled system and its structur
stability. I will do it through the simplest approach: I wil
show that classical digital electronics can be implemen
through chemical reactions. Since my key problem
this scheme is showingglobal consistency,and the proof
requires arbitrarily large circuits, I will have to show tha
the output of one gate can be plugged into the input
0 0031-9007y97y78(6)y1190(4)$10.00
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others for arbitrarily many layers, without degrading th
logic, keeping at all times full coupling.

We will need a power supply. I will define mine to
consist of two chemical species calledhigh and low;
their concentrations will be kept clamped strongly ou
of equilibrium, so an external reservoir is assume
This approximates the power supply in cells, the tw
compounds ATP and ADP; the cellular “power plants
keep their concentration as constant as feasible, nea
6 decades away from equilibrium. Thermodynamic
requires the logarithm of the equilibrium constants
lie in the (left) span of the stoichiometry matrix; it is
important that all reactions we use satisfy this constrai
so that there are no “hidden” power supplies.

The very first thing we need to consider is the trivia
gate, the signal repeater, which copies input onto outp
Any problems we encounter with it will recur for any
other gate. Let’s say a chemical speciesa is the input and
b the output. We will needb to exist in two chemically
distinct forms,b andb [24]. If b is a compound of higher
energy thanb, we can couple its production to the powe
supply, as inb 1 high % b 1 low; in the absence of
other reactions,fbg goes to a small value determined b
the rate of spontaneous decay inb % b. This is then
a sort of “capacitor,” which we charge with the powe
supply. If then the reactionb % b is catalyzed bya,

a 1 b % ab % ab % a 1 b , (1)

thena “shorts” the capacitor and discharges it, increasin
the concentration ofb. Hence whenfag is low, fbg is
low, and whenfag is high, fbg becomes high, and the
transitions have certain rise and decay times determin
by the precise rates we use.

In Fig. 1 we see the output of simulating a chain o
several such gates witha °! b °! c °! d . . . . The
gates are all identical; the only change between them
the name of the compound. The wave forms are dyi
as we go down this chain: The difference between t
“high” and the “low” levels is becoming smaller and
smaller. So this network is not a suitable signal repeat
Figure 2 shows the output of a similar simulation usin
the reactions

2a 1 b % a2b % a2b % 2a 1 b (2)
© 1997 The American Physical Society
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FIG. 1. A cascade of identical signal repeatersa °! b °!
c °!, using Eq. (1). The input tofag is a square wave
Top (small) panels show each signal individually with varyi
scales, bottom (large) panel shows all signals simultaneousl
the same scale. The amplitude of the signal gets reduced
rapidly.

(i.e., double stoichiometry on the input). We can see t
the amplitude of the pulses gets stabilized; both high
low now approach amply separate levels [25]. I will no
prove that higher stoichiometry is essential.

All concentrations become stationary after some tr
sients. If we plot these steady levels as a function of
inputs, we get the classical plots shown in Fig. 3. The
diagrams represent the concentration ofb as a function
of a, but also ofc as a function ofb, and so on. If we
call xn the nth compound in the chain, then the diagra
showsxn11 as a function ofxn; n here labelsposition on
the chain. This is a recurrence relation, also called amap.

This type of map is usually studied in the theory
dynamical systems, where it represents some dynam
law, and n labels time. A large part of dynamica
systems theory is devoted to the asymptotic states,
what happens at arbitrarily long times. In our case t
translates to “arbitrarily deep into the circuit,” whic
is what we want to study. Dynamical systems theo
tells us that the only asymptotic states of maps wh
are monotonically increasing and bounded (our ca
are steady states. The steady states (also called
points) of a map occur whenxn11 ­ xn, i.e., when the
curve intersects the diagonal line. They can be stable
unstable; stable (unstable) means that if somexn is near
the fixed point, then, form . n, the xm are nearer to
(farther away from) the fixed point; this happens wh
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FIG. 2. A cascade of signal repeaters with double stoichio
etry [Eq. (2)]. Same conventions as Fig. 1. The amplitude
the signal converges to a steady value.

the curve is shallower (steeper) than the diagonal at
intersection.

In the case of stoichiometry onesS ­ 1d there are
at most two fixed points, and only one can be stab
[26]. For S . 1 there can be three fixed points, th
two outer ones being stable, the middle one unstab
We can propagate logic arbitrarily deep into the cha

FIG. 3. The steady-state concentration of the outputs of t
signal repeaters,S ­ 1 [Eq. (1)] and S ­ 2 [Eq. (2)] as a
function of the steady-state level of the inputa. The diagonal
line is fag as a function of itself; the intersections of the tw
curves with this diagonal are the fixed points.
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if and only if we have at least two distinct stable fixe
points, with each one corresponding to a distinct logica
state. But two stable fixed points are possible on
for S . 1.

Now the main conceptual problems have been solve
The only remaining point is to construct explicitly a few
different gates (Fig. 4); if all of the gates are “built”
(i.e., the rates so chosen) so that their response is
of our fixed points when the inputs are at the fixed poin
then they will be globally compatible. Strictly speaking
one needs onlyNAND, since all logical functions can be
constructed from it, but since each internal wire in th
circuit is a chemically distinct compound, it is desirabl
to implement gates directly [27]. A precise definition o
the gates can be found elsewhere [28].

Adding is a problem that exemplifies rather nicely th
spirit of this work, because when we add, we have
shift the “carry” digits to the next column. These ca
accumulate to generate a cascade, so we need to be
to propagate logic across an entire network. In order
add two three-bit numbers (giving a four-bit number a
the output), we need to cascade three full adders. T
three-bit adder is shown in Fig. 5; it can add up to7 1 7.

Ephemeral memory can be implemented rather direct
but if the memory is supposed to be long-term, ca
must be exercised. A flip-flop can be made by having
compound in two statessc, cd, and then two inputssa, bd
which catalyze conversion to the other state by coupli
to the power supply:

FIG. 4. The output of one implementation of the four classic
gates. a and b are the inputs. While there are artifacts, th
logic levels are still well separated.AND, OR, and NAND are
implemented directly,XOR is implemented asAND(NAND,OR).
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a 1 c 1 high % · · · % a 1 c 1 low (3)

and similarly for b sending c °! c. The lifetime of
this memory would appear to be the lifetime of th
uncatalyzed reactionc % c. However, such a mechanism
is not resistant to fluctuations in the inputs; even a minu
amount of catalyst can reduce the lifetime dramatical
In order to make memory stable, we need to make
systemprefer to be either allc or all c. There are many
ways to do this; for instance,

2c 1 c 1 high % · · · % 3c 1 low (4)

and vice versa [29]. The addition of these two se
catalytic reactions makes the memory strongly robust (
Fig. 6) and, in principle, infinitely long lived even in the
presence of input fluctuations; however, energy is dra
from the power supply to “refresh” the flip-flop. There i
some resemblance to dynamic vs static RAM, and to
self-phosphorylating enzyme CamK II [30], which migh
be implicated in long-term memory in neurons.

I have shown one particular explicit implementation
digital logic in chemical kinetics, and thus shown univers
computation capabilities. However, many questions s
remain open (which I will comment upon in some great
detail elsewhere [31]): What is the interplay between
formation transfer and thermodynamics? Since no cata

FIG. 5. Numerical simulation of the three-bit adder:c ­
a 1 b. The lower traces are the three bits of inputa and
the three bits of inputb; the four upper traces are the four bit
of outputc. The transients as the inputs are changed show
delays in propagating carries. The five columns of differe
inputs show: 0 1 0 ­ 0, 7 1 7 ­ 14, 2 1 2 ­ 4, 6 1 3 ­
9, and7 1 1 ­ 8. The network has about 140 compounds
290 reactions.
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FIG. 6. Two flip-flops; sta is a “static” flip-flop [Eq. (3)], and
dyn a “dynamic” one with autocatalytic stabilization [Eq. (4)
Both can switch between states fast as the inputsa and b are
pulsed. At time 100 both inputs are set to 0.1; sta forgets
state, while dyn does not.

is perfectly selective for its substrate, how robust a
computations under the massive cross talk of rand
“unintended” reactions? Are there equivalents of t
gain bandwidth and other classic theorems of electron
And, presumably, many more.
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